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Abstract. The “domain” calcium (Ca2+) concentration near an open Ca2+ channel can be mod-
eled as buffered diffusion from a point source. The concentration profiles can be well approximated by
hemispherically symmetric steady-state solutions to a system of reaction-diffusion equations. After
nondimensionalizing these equations and scaling space so that both reaction terms and the source
amplitude are O(1), we identify two dimensionless parameters, εc and εb, that correspond to the
diffusion coefficients of dimensionless Ca2+ and buffer, respectively.

Using perturbation methods, we derive approximations for the Ca2+ and buffer profiles in three
asymptotic limits: (1) an “excess buffer approximation” (EBA), where the mobility of buffer exceeds
that of Ca2+ (εb � εc) and the fast diffusion of buffer toward the Ca2+ channel prevents buffer
saturation (cf. Neher [Calcium Electrogenesis and Neuronal Functioning, Exp. Brain Res. 14,
Springer-Verlag, Berlin, 1986, pp. 80–96]); (2) a “rapid buffer approximation” (RBA), where the
diffusive time-scale for Ca2+ and buffer are comparable, but slow compared to reaction (εc � 1,
εb � 1, and εc/εb = O(1)), resulting in saturation of buffer near the Ca2+ channel (cf. Wagner and
Keizer [Biophys. J., 67 (1994), pp. 447–456] and Smith [Biophys. J., 71 (1996), pp. 3064–3072]);
and (3) a new “immobile buffer approximation” (IBA) where the diffusion of buffer is slow compared
to that of Ca2+ (εb � εc).

To leading order, the EBA and RBA presented here recover results previously obtained by Neher
(1986) and Keizer and coworkers (Wagner and Keizer, 1994; Smith, 1996), respectively, while the IBA
corresponds to unbuffered diffusion of Ca2+. However, the asymptotic formalism allows derivation
for the first time of higher order terms, which are shown numerically to significantly extend the range
of validity of these approximations. We show that another approximation, derived by linearization
rather than by asymptotic approximation (Stern [Cell Calcium, 13 (1992), pp. 183–192], Pape, Jong,
and Chandler [J. Gen. Physiol., 106 (1995), pp. 259–336], and Naraghi and Neher [J. Neurosci.,
17 (1997), pp. 6961–6973]), interpolates between the EBA and IBA solutions. Finally, we indicate
where in the (εc,εb)-plane each of the approximations is accurate and show how the validity of each
depends not only on buffer parameters but also on source strength.
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1. Introduction. A deep understanding of the dynamics of calcium (Ca2+) is
very important in cellular physiology because Ca2+ binds to many proteins and reg-
ulates their activity and interactions [1, 2, 6]. Calcium mediates many hormonal
responses and is important in secretion of hormones and neurotransmitters, in muscle
contraction, and in the regulation of gene expression. Because Ca2+ is a ubiquitous
signaling agent and is toxic in high concentrations, it is highly buffered by Ca2+-
binding proteins, so that less than 1% of the Ca2+ in cells exists in a free ionic form.
This helps to confine large excursions in concentration to well-localized regions and
contributes to specificity of signaling. The targets that bind Ca2+ include secretory
vesicles, Ca2+-activatedK+ channels, and the channels that themselves conduct Ca2+

through membranes. These targets are located very near the sources of Ca2+, often
within tens of nanometers. This is close enough that steady states are achieved within
microseconds [10, 11, 15]. In contrast, Ca2+-regulated cellular processes typically op-
erate on a time-scale of milliseconds. Thus, though not a complete description for all
cases, it is of interest to examine steady-state solutions. For simplicity, we consider
only isolated Ca2+ sources and one species of buffer.

Approximate solutions have been derived for this case in the biophysical literature
and are described in section 3. We show in sections 5 and 6 that two of these ap-
proximate solutions correspond to leading-order solutions of the equations in different
asymptotic regimes. These regimes are defined in terms of two dimensionless parame-
ters identified in section 4, where we nondimensionalize the equations and scale space
so that the reaction terms and the source amplitude are O(1). The dimensionless
parameters (εc and εb) correspond to the scaled diffusion coefficients of dimensionless
Ca2+ and buffer, respectively.

In addition to putting the results in the literature on a more rigorous basis, with
this approach, we are able to extend the excess and rapid buffer approximations to
higher order. In section 7, we derive to first and second order another approximation,
which we interpret as a (nearly) immobile buffer approximation. Refer to Table 3.1
for a synopsis of the various approximations discussed in this manuscript and when
they first appeared in the literature.

Another approximation based on linearizing the equations is discussed in section
8. In section 9, we compare the asymptotic approximations (EBA, RBA, IBA) and
the linearized approximation (LIN) to numerically calculated steady-state solutions of
the full equations. The quantitative error analysis confirms the asymptotic analysis
and clarifies the regions of validity of the four approximations in terms of the two
dimensionless parameters of the problem, εc and εb.

2. Formulation of the reaction-diffusion problem. The buffered diffusion
of Ca2+ near isolated point sources can be described mathematically by a system of
reaction-diffusion equations with spherical symmetry. (In some respects, a stochastic
description may be more appropriate because of the small number of Ca2+ ions, but
we use deterministic equations in order to obtain analytical results.) It is standard to
assume homogeneity, isotropy, and Fickian diffusion as well as bimolecular association
reactions between Ca2+ and buffer of the form

Ca2+ +Bj

k+
j
⇀↽
k−j

CaBj ,

where Bj and CaBj are free and bound buffer, respectively, and j is an index over the
buffer species. With these assumptions, it is straightforward to write the following
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system of reaction-diffusion equations for the concentrations of free Ca2+, free buffer
([Bj ]), and bound buffer ([CaBj ]), respectively [21]:

∂[Ca2+]

∂t
= DCa∇2[Ca2+] +

∑
j

Rj ,(2.1)

∂[Bj ]

∂t
= DBj

∇2[Bj ] +Rj ,(2.2)

∂[CaBj ]

∂t
= DCaBj

∇2[CaBj ]−Rj ,(2.3)

with the reaction terms given by

Rj = −k+
j [Bj ][Ca2+] + k−j [CaBj ].(2.4)

In these equations, DCa, DBj , and DCaBj are diffusion coefficients for free Ca2+, free

buffer, and bound buffer, respectively; k+
j and k−j are the association and dissociation

rate constants for buffer j, respectively. Buffers that do not diffuse are referred to as
stationary, immobile, or fixed and are accounted for by setting DBj = DCaBj

= 0.

For boundary conditions, we assume a point source of Ca2+ at the origin and a
fixed background Ca2+ concentration. There are no sources for buffer, and the buffer
is assumed to be in equilibrium with Ca2+ far from the source. The corresponding
equations are

lim
r→0

{
−2πr2DCa

d[Ca2+]

dr

}
= σ, lim

r→∞[Ca2+] = [Ca2+]∞,

lim
r→0

{
−2πr2DBj

d[Bj ]

dr

}
= 0, lim

r→∞[Bj ] = [Bj ]∞,

lim
r→0

{
−2πr2DCaBj

d[CaBj ]

dr

}
= 0, lim

r→∞[CaBj ] = [CaBj ]∞,

where

[Bj ]∞ =
Kj [Bj ]T

Kj + [Ca2+]∞
, [CaBj ]∞ =

[Ca2+]∞[Bj ]T

Kj + [Ca2+]∞
,

Kj = k−j /k
+
j is the dissociation constant for buffer j, and [Bj ]T = [Bj ]+[CaBj ] is the

total concentration profile of each buffer. The factor 2π reflects the fact that [Ca2+]
is diffusing into a hemisphere. In the literature one often finds 4π, which is equivalent
provided σ is set equal to twice the physical source strength. In this paper σ always
represents the physical source strength.

If we further assume that the diffusion constant of each mobile buffer is not
affected by the binding of Ca2+ (that is, DBj

= DCaBj
), and also assume that [Bj ]T

is initially uniform, then [Bj ]T will remain uniform for all time. Thus we can omit
(2.3) and rewrite (2.4) as

Rj = −k+
j [Bj ][Ca2+] + k−j ([Bj ]T − [Bj ]) .

As motivated in section 1, we restrict consideration to steady-state solutions, that
is, to the “domains” of high Ca2+, which are established within microseconds near
sources.
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Note that for fixed buffers, DBj
= DCaBj

= 0 in (2.1)–(2.3), so the Rj = 0

in the steady state. Thus, if all the buffers are fixed, then the steady-state [Ca2+]
distribution is the unbuffered steady-state solution. For mobile buffers, on the other
hand, the reaction terms are not zero in general at steady state; net production of
buffer at a point in space can be balanced by diffusion of free buffer away from that
point if there is a standing gradient. Although we will not consider time-dependent
solutions here, fixed buffers do have a big influence in that case—for example, slowing
the approach to the steady state.

Finally, for simplicity, we assume a single mobile buffer species, [B], resulting in
the following boundary-value problem:

0 = Dc∇2[Ca2+]− k+[B][Ca2+] + k− ([B]T − [B]) ,(2.5)

0 = Db∇2[B]− k+[B][Ca2+] + k− ([B]T − [B]) ,(2.6)

with the boundary conditions

lim
r→0

{
−2πr2Dc

d[Ca2+]

dr

}
= σ, lim

r→∞[Ca2+] = [Ca2+]∞,

lim
r→0

{
−2πr2Db

d[B]

dr

}
= 0, lim

r→∞[B] = [B]∞ =
K[B]T

K + [Ca2+]∞
.

(2.7)

For notational simplicity, we have written Dc and Db for the diffusion coefficients of
free Ca2+and free buffer, respectively, and ∇2 as an abbreviation for

∇2 =
1

r2

d

dr

[
r2 d

dr

]
.

The remainder of the paper is devoted to approximate solutions of the steady-state
equations for buffered Ca2+ diffusion (2.5)–(2.7).

3. Survey of prior results. Beginning with the model problem (2.5)–(2.7),
several investigators have derived approximate solutions in different limiting param-
eter regimes. Since the results presented here are an extension of these ideas, we will
briefly review this previous work; see Table 3.1.

3.1. The excess buffer approximation (EBA). In his seminal work, Neher
[12] made the critical observation that if buffer is present in excess, then the free mobile
buffer profile is not perturbed by the presence of the source. Under this assumption,
one can make the approximation that [B] ≈ [B]∞ in (2.5), yielding

0 = Dc∇2[Ca2+]− k+[B]∞[Ca2+] + k− ([B]T − [B]∞) .(3.1)

Then (2.6) is approximated by

k− ([B]T − [B]∞) = k+[B]∞[Ca2+]∞,

so (3.1) becomes

0 = Dc∇2[Ca2+]− k+[B]∞
(
[Ca2+]− [Ca2+]∞

)
.

This linear equation for [Ca2+] can be solved easily and applying the boundary con-
ditions (2.7) gives [4, 7]

[Ca2+] =
σ

2πDcr
e−r/λ + [Ca2+]∞,(3.2)
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Table 3.1
Relevant references to the different approximate steady-state solutions to the equations for the

buffered diffusion of Ca2+. Entries labeled this manuscript are presented here for the first time.

Approximation 1st order 2nd order

excess buffer approximation Neher 1986 [12] this manuscript
Stern 1992 [20]

rapid buffer approximation Wagner and Keizer 1994 [21] this manuscript
Smith 1996 [16]

immobile buffer approximation this manuscript this manuscript
Stern 1992 [20]

linearization Pape et al. 1995 [14] N/A
Naraghi and Neher 1997 [11]

where λ is the characteristic length constant for the mobile Ca2+ buffer given by
λ =

√
Dc/k+[B]∞. This approximation has been shown to be valid when mobile

buffer is in high concentration and/or when the source amplitude is small, that is,
limr→0 [B] ≈ [B]∞ [12, 17].

3.2. The rapid buffer approximation (RBA). Whereas the heuristic behind
the EBA is linearizing the equations by assuming the free buffer is constant, the RBA
is based on setting the reaction terms, thought to be fast, to equilibrium. In the course
of studying the effects of buffers on Ca2+ waves, Wagner and Keizer [21] derived the
following single nonlinear transport equation in lieu of the system (2.1)–(2.4):

∂[Ca2+]

∂t
= α

[
(Dc + κDb)∇2[Ca2+]− 2κDb

K + [Ca2+]
∇[Ca2+] · ∇[Ca2+]

]
,(3.3)

where α = (1 + κ)
−1

, κ = K[B]T /
(
K + [Ca2+]

)2
, and K = k−/k+. The same

equation, but without the transport term, appeared in [22] and was applied to one-
dimensional neuronal processes. Sneyd, Dale, and Duffy [19] derived a change of
variables that transforms (3.3) to a one-variable reaction-diffusion equation with non-
linear diffusion coefficient and no transport term.

For a single buffer, an explicit steady-state solution was obtained in [16] by directly
integrating (3.3):

[Ca2+] =
1

2Dc

(
−DcK +

σ

2πr
+Dc[Ca2+]∞ −Db[B]∞

+

√(
DcK +

σ

2πr
+Dc[Ca2+]∞ −Db[B]∞

)2

+ 4DcDb[B]TK

)
.(3.4)

Stern [20] had observed previously that the steady-state equations (2.5) and (2.6)
could be simplified and solved analytically when the reaction rates are large. The
steady-state formula (3.4) was extended to multiple sources in [3].

Wagner and Keizer [21] argued that the RBA would be valid provided that re-
action is fast compared to the diffusive time-scale, Tdiff = L2

wave/Dc, where Lwave

is the thickness of the wave-front. For a point source with spherical symmetry, the
conditions of validity are different and are described fully below. It already has been
recognized from numerical studies that a strong source (as well as fast binding rates)
is important for the validity of the RBA [17]. The fundamental assumption used



ASYMPTOTIC ANALYSIS OF BUFFERED CALCIUM DIFFUSION 1821

in deriving both (3.3) and (3.4) is that buffer and Ca2+ are in pointwise equilib-
rium in space, a condition called local equilibrium. This, combined with the fact that
[Ca2+] → ∞ as r → 0 in (3.4), implies limr→0 [B] = 0. Thus, the steady-state RBA
cannot be valid unless the source is strong enough to saturate the buffer. Since in
the EBA the buffer is assumed not to be perturbed even at the source, the EBA and
RBA approximations are complementary.

3.3. Linearization. A number of authors [11, 14, 20] have derived approxi-
mate steady-state solutions to (2.5)–(2.7) by linearizing the reaction-diffusion system
around the equilibrium values, [B]∞ and [Ca2+]∞ (for a review see [13]). Thus, defin-
ing δ[Ca2+] = [Ca2+]− [Ca2+]∞ and δ[B] = [B]− [B]∞, substituting in (2.5)–(2.7),
and keeping only linear terms leads to a system of linear ODEs that can be solved to
give

[Ca2+] = [Ca2+]∞ +
σ

2πr (Dc + κ∞Db)

[
1 +

κ∞Db

Dc
e−r/λ

]
,(3.5)

[B] = [B]∞ +
σκ∞

2πr (Dc + κ∞Db)

[
e−r/λ − 1

]
,(3.6)

where

1

λ2
=

1

τ

(
1

Db
+

κ∞
Dc

)
,

1

τ
= k+[Ca2+]∞ + k−,

and

κ∞ =
K[B]T(

K + [Ca2+]∞
)2 .(3.7)

Naraghi and Neher [11] extended and applied this method to the case of multiple
buffers. The κ∞ here is the same as the κ in (3.3), evaluated at [Ca2+]∞. When κ∞ is
large, its reciprocal is approximately the fraction of [Ca2+] which is unbound, typically
less than 0.01. For large κ∞, (3.5) reduces to the EBA solution for [Ca2+], (3.2). In
the same limit, (3.6) gives an improvement to the original EBA approximation for
buffer that allows for partial saturation.

As can be seen, δ[Ca2+] does not remain small but becomes unbounded as r → 0,
so this linearization procedure requires justification. In section 8, we discuss under
what conditions it is valid.

4. Nondimensionalization. We begin the original work in this paper by nondi-
mensionalizing the dependent variables of (2.5)–(2.7), [Ca2+] and [B], by scaling by
representative concentrations, the dissociation constant of the buffer (K) and the total
concentration of buffer ([B]T ), respectively. Thus, the dimensionless free Ca2+ is given
by c = [Ca2+]/K (c∞ = [Ca2+]∞/K) and dimensionless free buffer by b = [B]/[B]T
(b∞ = [B]∞/[B]T ). Define the scaled independent variable ρ = r/L, so the boundary
condition (2.7) for c near the source becomes

lim
ρ→0

{
−ρ2 dc

dρ

}
=

σ

2πDcKL
,

where L is chosen so that the right-hand side of this expression is unity, i.e.,

L =
σ

2πDcK
.(4.1)
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Using this nondimensionalization, (2.5) and (2.6) simplify to

εc∇2
ρc− (cb+ b− 1) = 0,(4.2)

εb∇2
ρb− (cb+ b− 1) = 0,(4.3)

where the subscript on the Laplacian indicates that the differentiation is with respect
to ρ. The dimensionless diffusion coefficients for the dimensionless free Ca2+ and
buffer are given by

εc =
(2π)2D3

cK
2

σ2k+[B]T
,(4.4)

εb =
(2π)2D2

cDbK

σ2k+
.(4.5)

Thus, the boundary conditions (2.7) become

lim
ρ→0

{
−ρ2 dc

dρ

}
= 1, lim

ρ→∞c = c∞,(4.6)

lim
ρ→0

{
−ρ2 db

dρ

}
= 0, lim

ρ→∞b = b∞ =
1

1 + c∞
.(4.7)

The reader may find it of interest to compare the nondimensionalization with the
informal scaling analysis of Roberts [15].

It will be convenient for calculation and interpretation to define alternative di-
mensionless constants by regrouping the factors that εc and εb have in common.
Define

ε =
(2π)2D3

cK

σ2k+
,(4.8)

the buffering factor β,

β =
K

[B]T
,(4.9)

and the ratio of the diffusion coefficients D,

D =
Db

Dc
.(4.10)

Then εc = εβ and εb = εD.

4.1. Physiological values for dimensionless parameters and representa-
tive profiles. Nondimensionalization has reduced the seven parameters of the orig-
inal problem (k+, k−, [B]T , [Ca2+]∞, Dc, Db, σ) to three (εc, εb, c∞). The first two
parameters are the diffusion coefficients described above. The third parameter c∞
appears in the boundary conditions for Ca2+ and buffer far from the source. It ap-
pears in the solution as an additive constant, and through its influence on b∞ (4.7).
Typically, c∞ � 1 and is not important. Therefore, we focus on parameters εc and
εb.
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Table 4.1
Table of parameters for Ca2+-binding species used in Figure 4.1.

Buffer Db k+ k− K
(µm2/s) (µM−1s−1) (s−1) (µM)

BAPTA 95 600 100 0.17
EGTA 113 1.5 0.3 0.2
ENDOG 15 500 5000 10

Table 4.2
Physiological values of εc and εb used in Figure 4.1. The dimensionless parameters εc and

εb are calculated according to (4.4) and (4.5) using the values of total mobile buffer concentration,
[B]T , and current amplitude, iCa, shown below in combination with buffer parameters shown in
Table 4.1. Also shown are dimensionless parameters, ε, β, and D, calculated using (4.8), (4.9), and
(4.10), respectively. Calculation of D assumes Dc = 250 µm2/s. Membrane current, iCa, of 1.0 pA
corresponds to source amplitude, σ, of 5.1824× 10−12 µmoles/s, using Faraday’s law, σ = iCa/zF ,
where z = 2 is the valence of Ca2+ and F = 9.648× 104 coul/mol.

Symbol in [B]T iCa ε β D εc εb
Figure 4.1 (µM) (pA)

∗ 100 0.05 2.55 0.00167 0.38 0.00425 0.97
BAPTA ◦ 1000 0.05 2.55 0.000167 0.38 0.000425 0.97

� 100 0.5 0.0255 0.00167 0.38 4.25e-05 0.0097
∗ 100 0.05 1220 0.002 0.452 2.45 554

EGTA ◦ 1000 0.05 1220 0.0002 0.452 0.245 554
� 100 0.5 12.2 0.002 0.452 0.0245 5.54
∗ 100 0.05 184 0.1 0.06 18.4 11

ENDOG ◦ 1000 0.05 184 0.01 0.06 1.84 11
� 100 0.5 1.84 0.01 0.06 0.184 0.11

Table 4.1 shows experimental estimates of the dimensional parameters for three
representative Ca2+-binding species: two exogenous Ca2+ chelators used in experi-
ments, namely, BAPTA, a fast, high-affinity mobile buffer, and EGTA, a slow high-
affinity mobile buffer. In addition, ENDOG refers to an endogenous buffer with low
mobility using properties estimated for a neuroendocrine cell [10]. In Table 4.2, εc
and εb are estimated for several values of the source amplitude and total buffer con-
centration and plotted in the (εc,εb)-plane of Figure 4.1. In agreement with (4.4) and
(4.5), increasing buffer concentration decreases εc but has no effect on εb (horizontal
lines in Figure 4.1). This conforms to the intuition that increased buffer reduces the
mobility of Ca2+. On the other hand, increasing the Ca2+ source amplitude causes a
reduction in both εc and εb (diagonal lines in Figure 4.1). This reflects the fact that
in our scaling, increasing σ, like increasing reaction rate k+, has the effect of slowing
the diffusion of both species compared to reaction.

The graphs labeled 0.05 pA and 0.5 pA in Figure 4.1 show Ca2+ and buffer profiles
for two particular choices of εc and εb (see ENDOG ∗ and 	 in Table 4.2). In both
cases, the buffer parameters used represent 100 µM of “endogenous” buffer [10] (see
Table 4.1). Note that in the case of a 0.05 pA source, the buffer profile is relatively
unperturbed, consistent with the EBA, while in the case of a 0.5 pA source, the buffer
profile approaches a small value for small ρ, consistent with the RBA. In the case of
the strong versus weak source, the Ca2+ domains in Figure 4.1 are of similar size
in units of dimensionless space, ρ. However, L (cf. (4.1)) is 0.0165 µm in the weak
source case and 0.165 µm in the strong source case, and when these different scalings
of dimensional space, r, are accounted for, the 0.5 pA Ca2+ domain is approximately
10 times larger than the 0.05 pA domain. Both cases were calculated with [Ca2+]∞
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Fig. 4.1. Estimated values of dimensionless parameters εc and εb for several different Ca2+-
binding species, including the exogenous Ca2+ chelators, EGTA and BAPTA, and a low-affinity
buffer, ENDOG, with properties based on estimates for endogenous buffer in adrenal chromaffin cells
[10]. The values of εc and εb depend strongly on total buffer concentration and source amplitude,
so the positions in the (εc,εb)-plane for each Ca2+-binding species are plotted for three different
combinations of [B]T (in µM) and current amplitude, iCa (in pA): ∗, 100 and 0.05; ◦, 1000 and
0.05; �, 100 and 0.5. See Tables 4.1, 4.2 for numerical values. Profiles of dimensionless Ca2+ (c)
and free buffer (b) are shown for a 0.05 and 0.5 pA source. The blue lines represent the numerically
calculated solution of the full equations, (4.2) and (4.3); red and green lines are first- and second-
order EBA for the weak source and first- and second-order RBA for the strong source; magenta
lines are the solutions of the linearized equations, (8.3) and (8.4).

fixed at 0.1 µM, so that c∞ is 0.01.

5. The EBA. Physically, the essence of the EBA is that the buffer is not satu-
rated, even at the source. In section 3.1, we pointed out that this assumption leads
to a linear equation with a simple solution (3.2). High buffer concentration minimizes
saturation, but the mobility of the buffer is also important. Stationary buffers, even
at high concentrations, will eventually be saturated near a source. The key is whether
sufficient mobile buffer can diffuse to the source to replenish the free buffer that be-
comes bound. This motivates consideration of a regime in which the mobility of b is
much greater than that of c in (4.2) and (4.3).

Therefore, we consider in detail the case εc = O(1), εb 
 1. In this regime,
the diffusion coefficient of c is comparable to the reaction terms, while the diffusion
coefficient of b is much larger than the reaction terms. Because εb = εcD/β, one way
that this could occur is if D = O(1) while β � 1, that is, [B]T 
 K. This is the
connection to the original notion of excess buffer. Note, however, that εc = O(1)
implies also that the source strength (σ) is not too large (4.4). Similar results obtain
when εb = O(1), εc � 1.

Let µ ≡ β/D = εc/εb be the small parameter. Then, (4.2) and (4.3) become the
regularly perturbed system

εc∇2
ρc− (cb+ b− 1) = 0,(5.1)

εc∇2
ρb− µ (cb+ b− 1) = 0.(5.2)
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We assume c and b have perturbation expansions for small µ of the form

c = c0 + µc1 + µ2c2 + · · · ,
b = b0 + µb1 + µ2b2 + · · ·

and obtain the leading-order equations

εc∇2c0 − (c0b0 + b0 − 1) = 0,(5.3)

∇2b0 = 0.(5.4)

Equation (5.4), together with the leading-order boundary conditions for c0 (4.6) and
b0 (4.7) as ρ → ∞, gives

b0 = b∞,(5.5)

where b∞ = 1/ (1 + c∞) (4.7). Thus, the assumption in prior work that the buffer is
not perturbed from its rest value when it is present in excess is derived here as the
leading-order approximation for b. Substituting (5.5) into (5.3) gives

εc∇2c0 − b∞ (c0 − c∞) = 0,

with the boundary conditions

lim
ρ→0

{
−ρ2 dc0

dρ

}
= 1, lim

ρ→∞c0 = c∞,(5.6)

and solution

c0 = c∞ +
1

ρ
e−ρ/Λ,(5.7)

where the dimensionless space constant Λ =
√
εc/b∞. This is Neher’s result (3.2)

expressed in dimensionless form.

5.1. Second-order results. The second-order equation for c1 is

εc∇2c1 − (c1b0 + c0b1 + b1) = 0.(5.8)

Combining (5.1) and (5.2) gives a relationship,

∇2
ρ [µc− b] = 0,(5.9)

which will enable us to eliminate b1 in (5.8). Expanding (5.9) in powers of µ, we
obtain a recursion relation

ci − bi+1 =
Ai

1

ρ
+Ai

0

that gives bi+1 in terms of ci. The Ai
1 and Ai

0 are constants to be determined by the
boundary conditions at each order. For i = 0, the boundary conditions for c0 (5.6)
and b1,

lim
ρ→0

{
−ρ2 db1

dρ

}
= 0, lim

ρ→∞b1 = 0,



1826 G. D. SMITH, L. DAI, R. M. MIURA, AND A. SHERMAN

allow us to identify A0
1 = 1 and A0

0 = c∞. Thus,

b1 =
1

ρ

(
e−ρ/Λ − 1

)
,

and the second-order equation (5.8) can be written as

εc∇2c1 −
[
c1b∞ +

(
1 + c∞ +

1

ρ
e−ρ/Λ

)
1

ρ

(
e−ρ/Λ − 1

)]
= 0.(5.10)

To solve (5.10) for c1, we change variables so that x = ρ/Λ and C = ρc1 = Λxc1:

Cxx = C +
1

b∞

(
1 + c∞ +

1

Λx
e−x

)(
e−x − 1

)
.(5.11)

Using variation of parameters, the general solution of (5.11) is

C = ξ (x) ex + η (x) e−x,(5.12)

where

ξ (x) =
1 + c∞
2b∞

(
e−x − 1

2
e−2x

)
+

1

2Λb∞

∫ x

0

e−3y − e−2y

y
dy + ξ0,(5.13)

η (x) =
1 + c∞
2b∞

(ex − x)− 1

2Λb∞

∫ x

0

e−y − 1

y
dy + η0,(5.14)

and ξ0 and η0 are constants to be determined by the boundary conditions. This is
more easily done by reexpressing (5.12)–(5.14) in terms of c1:

c1 =
1

Λx

{
1 + c∞
2b∞

[
2−

(
1

2
+ x

)
e−x

]
+

1

2Λb∞

[
ex
∫ x

0

e−3y − e−2y

y
dy(5.15)

−e−x

∫ x

0

e−y − 1

y
dy

]
+ ξ0e

x + η0e
−x

}
.

The boundary condition (4.6), expanded in powers of µ, then gives limx→∞ c1 = 0,
which implies that the coefficient of ex in (5.15) approaches zero as x → ∞. Thus,

ξ0 = − 1

2Λb∞

∫ ∞

0

e−3y − e−2y

y
dy =

1

2Λb∞
ln

3

2
.

Similarly, limx→0

{−x2dc1/dx
}
= 0, which leads to

η0 = −ξ0 − 3(1 + c∞)

4b∞
.

Finally,

c1 =
1 + c∞
2b∞Λx

[
2− (2 + x) e−x

]
+

1

2b∞Λ2x

[
ex
∫ ∞

x

e−2y − e−3y

y
dy − e−x

(
ln

3

2
+

∫ x

0

e−y − 1

y
dy

)]
,

which is rewritten in terms of standard special functions below (5.18).
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5.2. Summary. We have derived a two-term asymptotic expansion for the regime
in which the buffer does not saturate (EBA), that is, εc = O(1) and εb 
 1. We have
expanded c and b in terms of µ = εc/εb = β/D as follows:

c ∼ c∞ +
1

ρ
e−ρ/Λ + µc1 +O

(
µ2
)
,(5.16)

b ∼ b∞ + µ
1

ρ

(
e−ρ/Λ − 1

)
+O

(
µ2
)
.(5.17)

Here c1 is given by

c1 =
1 + c∞
2b∞Λx

[
2− (2 + x) e−x

]
+

1

2b∞Λ2x

[
exE1(2x)− exE1(3x) + e−x

(
E1(x) + lnx− ln

3

2
+ γ

)]
,(5.18)

where x = ρ/Λ = ρ
√
b∞/εc, γ ≈ 0.5772 is Euler’s constant, and E1(x) is the expo-

nential integral,

E1(x) =

∫ ∞

x

e−y

y
dy.

6. The RBA. In the dimensionless equations, the reaction terms are O(1), so
the assumption of rapid binding is equivalent to εb � 1 and εc � 1. In other words,
diffusion of both b and c is slow compared to the reaction terms. This is the case, for
example, if µ = β/D = O(1) and ε � 1 due to either a large association rate constant
(k+), a large source amplitude (σ), or both. Note that a sufficiently strong source can
compensate for modest binding rates, so the historical name, RBA, is incomplete for
the approximation in this regime. The essence of the RBA, as derived in prior work
(see section 3.2), is the assumption of local equilibrium. This assumption is certainly
true to leading order, as can be seen from formally setting εc = εb = 0 in (4.2) and
(4.3) to obtain

b =
1

1 + c
.(6.1)

The heuristic derivation of the steady-state RBA can be completed by obtaining a
second algebraic relationship between b and c. Subtracting (4.3) from (4.2) yields

∇2
ρ (εcc− εbb) = 0.(6.2)

Integrating twice with respect to ρ and using the boundary conditions to determine
the integration constants gives

εcc− εbb =
εc
ρ

+ εcc∞ − εbb∞.(6.3)

Unlike (6.1), relation (6.3) is true whether or not εc and εb are small. Indeed, (6.3)
is equivalent to the fact that at steady state the flux of total Ca2+, bound to buffer
and unbound, across any spherical surface centered on the source is equal to the flux
entering through the source. Solving (6.1) and (6.3) for b and c gives the leading-order
approximations (6.6) and (6.7) below, where (6.7) is equivalent to (3.4). Thus, the
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steady-state RBA obtained previously in [16] is shown here to be the leading-order
solution to the full equations for small εb and εc.

In order to obtain higher-order correction terms and to ensure matching of inner
and outer solutions, we use (6.3) to eliminate c in (4.3), giving a differential equation
for b alone:

εb∇2
ρb−

(
1

µ
b2 + φ(ρ)b− 1

)
= 0,(6.4)

where

φ (ρ) =
1

ρ
+ c∞ − 1

µ
b∞ + 1.

If εb � 1 and µ = O(1), then (6.4) is a singularly perturbed differential equation.
Assuming an outer (large ρ) solution of the form

bout = bout0 + εbb
out
1 + ε2

bb
out
2 + · · · ,(6.5)

we have the leading-order equation

1

µ

(
bout0

)2
+ φ (ρ) bout0 − 1 = 0,

with positive solution

bout0 =
µ

2

[
−φ (ρ) +

√
φ (ρ)

2
+ 4/µ

]
.(6.6)

Using relation (6.3) between c and b, we have

cout0 =
1

2

[
−φ (ρ) +

√
φ (ρ)

2
+ 4/µ

]
+

1

ρ
+ c∞ − 1

µ
b∞.(6.7)

Note that the outer solution (6.6), (6.7) already satisfies the boundary conditions
at ρ = 0 as well as at ρ = ∞ because the conditions at both boundaries were used in
obtaining (6.3). In particular, as ρ → 0, bout0 ∼ ρ and cout0 ∼ 1/ρ, so the boundary
conditions at ρ = 0 are satisfied. This is fortunate as there are no free parameters
available to use in matching.

Examination of (6.3) reveals that b neither blows up nor has a boundary layer
near ρ = 0. Thus, the outer solution for b must be uniformly valid to the origin
and match the boundary condition there. One also can calculate the inner solution
explicitly, rescaling to introduce a new spatial variable x = ρ/εb, chosen to balance
terms in (6.4), to obtain

bin ∼ (x+ 2) εb +O
(
ε2
b

)
.(6.8)

This matches the outer solution obtained below to second order.
Using (6.4) and (6.5) we obtain the second-order outer equation,

∇2
ρb

out
0 −

[
2

µ
bout0 bout1 + φ (ρ) bout1

]
= 0.
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Since bout0 is known, this is an algebraic equation for bout1 :

bout1 =
∇2

ρb
out
0

2bout0

µ + φ (ρ)
=

2

ρ4
[
4/µ+ φ (ρ)

2
]2 ,

where for the second equality we have evaluated ∇2
ρb

out
0 .

For small ρ, bout1 ∼ 2. Thus, the outer solution satisfies

bout ∼ ρ+ 2εb +O
(
ε2
b

)
for small ρ. Rewriting the inner solution (6.8) in terms of the outer variable confirms
that the inner and outer solutions match up to O(εb).

6.1. Summary. We have calculated a two-term asymptotic expansion for the
solution to the buffered diffusion equations in the limit of εb and εc going to zero,
that is, when diffusion of buffer and Ca2+ are slow compared to reaction. The outer
solution expansion (6.5) is valid for all ρ. This gives for b,

b ∼ µ

2

[
−φ (ρ) +

√
φ (ρ)

2
+ 4/µ

]
+ εb

2

ρ4
[
4/µ+ φ (ρ)

2
]2 +O

(
ε2
b

)
,

and for c,

c ∼ 1

2

[
−φ (ρ) +

√
φ (ρ)

2
+ 4/µ

]
+
1

ρ
+c∞− 1

µ
b∞+εb

2/µ

ρ4
[
4/µ+ φ (ρ)

2
]2 +O

(
ε2
b

)
,

where

φ (ρ) =
1

ρ
+ c∞ − 1

µ
b∞ + 1.

7. The nearly immobile buffer approximation (IBA). In this section, we
consider a third case, εc = O(1) and εb � 1. This occurs if ε and β are both O(1),
while D � 1, that is, if the mobility of b is small compared to the mobility of c and
to the O(1) reaction terms.

Although this is a singularly perturbed system, we find again that the outer
solution satisfies the inner boundary conditions; the inner solution is omitted for
brevity. Beginning again with (4.2) and (4.3), and assuming an (outer) solution of
the form

c = c0 + εbc1 + ε2
bc2 + · · · ,

b = b0 + εbb1 + ε2
bb2 + · · · ,

we have the leading-order equations

εc∇2
ρc0 − (c0b0 + b0 − 1) = 0,(7.1)

c0b0 + b0 − 1 = 0.(7.2)

Obviously, ∇2
ρc0 = 0, so integrating twice and solving for the integration constants

using the boundary conditions gives

c0 =
1

ρ
+ c∞.(7.3)
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Thus, to leading order, Ca2+ behaves as if it were unbuffered. This makes sense,
as completely fixed buffer has no effect on the steady-state free Ca2+ distribution.
Furthermore, (7.2) implies that to leading order, the buffer is in equilibrium with the
free Ca2+ and satisfies

b0 =
1

1 + c0
.(7.4)

7.1. Second-order results. The O(εb)-system for the IBA is given by

εc∇2
ρc1 − (c1b0 + c0b1 + b1) = 0,(7.5)

∇2
ρb0 − (c1b0 + c0b1 + b1) = 0.(7.6)

Expressing b0 in terms of c0 using (7.4) and subtracting (7.6) from (7.5) gives

∇2
ρ

(
εcc1 − 1

1 + c0

)
= 0.

Integrating twice and using the boundary conditions gives

c1 =
1

εc

(
1

1 + c0
− 1

1 + c∞

)
=

1

εc
(b0 − b∞) .

Now using expression (7.4) for b0 in (7.6), we have

∇2
ρ

(
1

1 + c0

)
−
(

c1
1 + c0

+ (c0 + 1) b1

)
= 0.(7.7)

We solve the above equation for b1 by noting

∇2
ρ

(
1

1 + c0

)
=

2

ρ4 (1 + c0)
3

and rearranging (7.7) to give

b1 =
2

ρ4 (1 + c0)
4 − c1

(1 + c0)
2 .

Note that limρ→0 b1 = 2, which means that at second order, the “nearly” immobile
buffer is not completely saturated near the source.

7.2. Summary. The two-term asymptotic expansion for the case εc = O(1),
εb � 1, i.e., when the buffer has low mobility, is given by

c ∼ c0 + εbc1 +O(ε2
b),

b ∼ 1

1 + c0
+ εb

[
2

ρ4 (1 + c0)
4 − c1

(1 + c0)
2

]
+O(ε2

b),

where

c0 =
1

ρ
+ c∞

and

c1 =
1

εc

(
1

1 + c0
− b∞

)
.
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8. The linearized equations. An alternative to the asymptotic methods pre-
sented here is the method of linearizing the equations [11, 14, 20] as described in
section 3.3. Here we rederive the linear approximation and clarify its relationship to
the asymptotic approximations. Substituting c = c∞ + δc and b = b∞ + δb into (4.2)
and (4.3) gives

εc∇2
ρδc− [(1 + c∞) δb+ b∞δc+ δcδb] = 0,(8.1)

εb∇2
ρδb− [(1 + c∞) δb+ b∞δc+ δcδb] = 0,(8.2)

with boundary conditions

lim
ρ→∞ δc = 0, lim

ρ→0

(
−ρ2 dδc

dρ

)
= 1, lim

ρ→∞ δb = 0, lim
ρ→0

(
−ρ2 dδb

dρ

)
= 0.

Dropping the quadratic terms δc δb in (8.1) and (8.2) leaves a linear system whose
solution leads to the following approximations for c and b:

c = c∞ +
1

ρ (1 + κ∞D)

[
1 + κ∞De−Aρ

]
,(8.3)

b = b∞ +
βκ∞

ρ (1 + κ∞D)

[
e−Aρ − 1

]
,(8.4)

where

κ∞ =
1

β (1 + c∞)
2(8.5)

and

A2 =
1 + c∞

εb
(1 + κ∞D) =

1 + c∞
εb

+
εc

1 + c∞
.

When expressed in terms of dimensional quantities, the κ∞ above is the same as the
κ∞ in (3.7).

Because δc does not remain small but blows up as ρ → 0, dropping the δc δb
terms in (8.1) and (8.2) requires justification. Subtracting (8.2) from (8.1) gives
∇2

ρ [εcδc− εbδb] = 0, and integrating and using the boundary conditions give εcδc −
εbδb = εc/ρ, that is,

δc =
1

ρ
+

D

β
δb.(8.6)

Substitution into (8.2) gives

εb∇2
ρδb−

[(
1 + c∞ +

D

β
b∞

)
δb+

b∞
ρ

+
δb

ρ
+

D

β
δb2
]
= 0.(8.7)

We now can see that dropping δc δb in (8.1), (8.2) corresponds to dropping δb/ρ and
Dδb2/β in (8.7). This is justified when δb � b∞, whether or not δc is small, because
then Dδb2/β � Db∞δb/β and δb/ρ � b∞/ρ. This is valid for small ρ because the
latter terms then dominate the other terms in the brackets of (8.7).

There are two limiting cases in which the linear approximation reduces to simpler
forms that we have seen already. For large κ∞, EBA and the linear approximation
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are essentially equivalent. That is, if κ∞ 
 1, then, provided D = O(1), c∞ + δc
for the linearized solution (8.3) reduces to the leading-order solution c0 for the EBA
(5.7), and the linear approximation for b∞ + δb reduces to the second-order solution
b0 + µb1 for the EBA (5.17). This makes sense because large κ∞ implies β � 1,
which together with D = O(1) leads to the EBA. Conversely, when the EBA is valid,
δb � b∞ (5.17), and linearization also is valid.

On the other hand, if κ∞ is not large, then EBA and linearization differ. This
will be discussed further in section 9, where the various approximations are compared
numerically. Here we just note that in the extreme case of κ∞ → 0, the linear
approximation reduces to c = c∞ + 1/ρ and b = b∞. Small κ∞ means that there is
very little buffer or it has very low affinity. Therefore, Ca2+ is effectively unbuffered,
and the linear approximation for c is the same as the leading-order solution c0 for
the IBA (7.3). In this same limit, however, the linear approximation says that buffer
is unperturbed, in disagreement with the leading-order IBA solution for b, which is
in equilibrium with c. Thus, although the condition δb � b∞ does not hold in this
region, setting δb = 0 leads to the correct equation for c because the buffer has little
effect on Ca2+.

Further examination of (8.7) reveals that one can drop only the δb2 term and still
have a linear equation for δb:

εb∇2
ρδb−

(
1 + c∞ +

D

β
b∞ +

1

ρ

)
δb− b∞

ρ
= 0.(8.8)

However, the solution is considerably more complex than (8.3) and (8.4) because of
variable coefficients, and the approximation is not noticeably improved, so we do not
pursue this option further.

9. Error analysis. Solving (6.3) for c in terms of b and substituting into (4.3)
gives the full equations in terms of b alone,

εb∇2
ρb−

1

εc

[
εbb+

εc
ρ

+ εcc∞ − εbb∞

]
b− b+ 1 = 0.(9.1)

Numerical solutions of this equation, denoted by bfull , and associated values of cfull

(6.3), are the standard to which we compare the asymptotic approximations developed
above (denoted by bapp and capp). A finite difference scheme was used to discretize the
boundary-value problem defined by (9.1) and (4.7) and the resulting matrix equation
was solved using Newton’s method.

To compare the approximations, bapp and capp , to the numerical solutions, bfull

and cfull , of the full equations, we calculated an absolute error for b,

Eabs =

(∑
i

∣∣∣bappi − bfulli

∣∣∣p
)1/p

,

because b is bounded, and a relative error for c,

Erel =

(∑
i

∣∣∣∣∣c
app
i − cfulli

cfulli

∣∣∣∣∣
p)1/p

,

because c is unbounded, where p = 1, 2, or ∞. The index i runs over discretized mesh
intervals from the origin to a large value of ρ. These are very strict error measures,



ASYMPTOTIC ANALYSIS OF BUFFERED CALCIUM DIFFUSION 1833

−5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

log
10

 ( ε
c
 )

lo
g

1
0
 (

 ε
b
 )

EBA

Calcium − Relative Error

LIN

RBA

IBA

−5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

log
10

 ( ε
c
 )

lo
g

1
0
 (

 ε
b
 )

EBA

Buffer − Absolute Error

LIN

RBA IBA

Fig. 9.1. Regions of validity for the three first-order asymptotic approximations and lineariza-
tion are plotted in the (εc,εb)-plane. Solid (RBA), dotted (IBA), dot-dashed (EBA), and dashed
(LIN) contour lines indicate 10−3 relative error and absolute error in c and b, respectively. The ∗
and � correspond to ∗ and � in Figure 4.1. Text is placed on the “good” side of each contour.

since they require the approximate and “exact” solutions to be close both near and
far from the source. In Figures 9.1 and 9.2, p = 2; little change was detected with
p = 1 or p = ∞.

The asymptotic analysis predicted that EBA would be accurate for εb 
 1 and
εc = O(1), or εb = O(1) and εc � 1. In other words, EBA should be valid when the
dimensionless mobility of b is greater than that of c, which is confirmed by Figures 9.1
and 9.2. RBA was derived assuming εc � 1 and εb � 1, that is, both species have
low mobility in comparison to the rate of reaction. RBA is indeed accurate in the
lower left corner of the parameter plane, but also for most of the lower right region.
However, the right-hand part of the RBA region coincides with that of the IBA,
where εb is small, but εc is not, as expected from the IBA assumptions. The region of
validity of RBA extends into that of IBA because the RBA solution reduces to that
for unbuffered diffusion when the buffers are ineffective. Numerically, the IBA region
is thus largely redundant to the RBA, but it is useful to distinguish conceptually the
subregions of RBA where buffer significantly perturbs the c profile and where it has
little effect. In the latter case, the simpler IBA formulas can be used.

The IBA is not merely of academic interest. Buffers with reduced mobility cause
smaller perturbations of the Ca2+ signal at steady-state (7.3). This is of practical
importance experimentally, because Ca2+ concentration is typically measured using
fluorescent dyes, which are exogenous Ca2+ buffers. For example, conjugating the
Ca2+ indicator dye Ca2+green to the large molecule dextran reduces the diffusion
coefficient of the dye from 85 µm2/s [8] to 20 µm2/s [9]. There are trade-offs, however,
because stationary dyes tend to distort the transient signal even more than mobile
dyes [17].

Overall, for Ca2+, EBA and RBA roughly split the (εc,εb)-plane into two regions:
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Fig. 9.2. Regions of validity for the three second-order asymptotic approximations are plotted
in the (εc,εb)-plane. Linearization (LIN) replotted from Figure 9.1 for comparison. Solid (RBA2),
dotted (IBA2), dot-dashed (EBA2), and dashed (LIN) contour lines indicate 10−3 relative error and
absolute error in c and b, respectively. The ∗ and � correspond to ∗ and � in Figure 4.1. Text is
placed on the “good” side of each contour.

(1) the upper left (εc � εb), where EBA is valid, and (2) the lower right (εb � εc),
where RBA is valid. This suggests reinterpreting the parameter plane using rotated
coordinates, ε (cf. (4.8)), which is inversely proportional to σ2 and k+ and varies along
diagonals of slope 1 in the log-log plane, and µ = εb/εc (cf. section 5), which varies
along diagonals of slope −1. As µ = D/β (cf. (4.9), (4.10)), high buffer concentration
and mobility are found in the upper left region, where EBA is valid, while low buffer
concentration and mobility are found in the lower right region, where RBA and IBA
are valid.

Within the upper left region, the EBA contour lines are roughly parallel to the
ones shown in Figure 9.1, with slope ≈ 1. Along lines of slope 1, D/β is constant,
but when moving toward the lower left, both β and D decrease. At the same time,
σ and/or k+ increase. Thus, if source strength increases or buffer binding becomes
more rapid or buffer mobility decreases, then more buffer is needed to avoid satura-
tion. Similarly, within the RBA region, as buffer concentration increases, the source
strength or binding rate must increase to saturate the buffer, even if buffer mobility
decreases. Moving horizontally to the IBA region, we see that even a relatively weak
source can deplete the buffer if the concentration and mobility are low enough.

The ratio εb/εc also is proportional to κ∞ (cf. (8.5)), providedD and c∞ are fixed.
The region of accuracy for the linear approximation (LIN) for Ca2+ intersects both
the EBA region, where κ∞ tends to be large, and the IBA region, where κ∞ tends to
be small. In section 8, we saw that LIN reduces to EBA when κ∞ is large and, for
Ca2+, to IBA when κ∞ is small. In practice, the parameters are more likely to lie in
the IBA region because D is small rather than because β is large, but conceptually,
κ∞ in (8.3) and (8.4) interpolates between two distinct parameter regimes in which
(4.2) and (4.3) are nearly linear—one in which buffer is nonsaturating and one in
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which buffer is ineffective.

The profiles displayed in Figure 4.1 correspond to points lying between the EBA
and IBA/RBA regions (see ∗ and 	 in Figures 9.1, 9.2). When the source is relatively
weak, the behavior is more EBA-like, whereas when the source is strong, it is more
RBA-like. For the weak source, going to second order significantly improves the
accuracy of EBA by allowing partial buffer saturation. For the strong source, going
to second order significantly improves the accuracy of RBA by allowing less than
complete buffer saturation. IBA profiles (not shown) are similar to those for RBA
for both the strong and weak source. Both approximations are better for the strong
source than for the weak source, and going to second order does not help either for
the weak source. The strong source provides an example where RBA works because c
is nearly unbuffered in spite of the fact that buffer is saturated. The solution is nearly
a line of slope −1 in the log(c), log ρ plane, at least up to ρ ≈ 1, i.e., r ≈ L.

LIN significantly improves on EBA for the weak source; indeed, it is indistinguish-
able from the exact solution for c in Figure 4.1. LIN also gives an accurate result for
c when the source is strong, in spite of the fact that δb is not small (cf. section 8) in
that case. In fact, δb is so large, that buffer goes negative.

As another illustrative example, extensive use of LIN was made by Pape, Jong,
and Chandler [14] in their study of cut skeletal muscle fibers in frogs. These authors
added 20 mM EGTA in order to soak up essentially all the Ca2+ released from internal
stores and limit the spread of Ca2+. This had two benefits. The Ca2+ release channels,
which are themselves Ca2+-sensitive, then were effectively isolated from each other,
and the protons that are stoichiometrically liberated from EGTA when it binds Ca2+

were used to estimate the total Ca2+ released.

Using their estimated source strength of about 0.15 pA, or even up to an order
of magnitude larger, the parameters lie deep in the EBA regime, and LIN, EBA, and
EBA2 are indistinguishable both from each other and from the exact solution. In the
range 1–10 pA, buffer saturation becomes nonnegligible, but this is captured by EBA2
and LIN. Continuing well beyond the physiological range, 10–100 pA, EBA2 and LIN
begin to underestimate the degree of buffer saturation significantly. The results for
c remain qualitatively acceptable even for first-order EBA for all plausible values of
source strength. Independent of σ, at these high concentrations of high-affinity buffer,
LIN and EBA2 are indistinguishable because κ∞ is enormous (about 40,000).

Generally, within the EBA region, there is a choice of three approximations. These
are leading-order EBA, LIN, and second-order EBA, in order of increasing complexity
and increasing accuracy. Whereas at the margins, LIN improves on EBA, by account-
ing for partial buffer saturation, there is a significant region where the second-order
EBA for buffer (5.17) does the same somewhat more simply and as accurately (see
Figure 9.2). The second-order EBA for Ca2+ is too complex to calculate by hand
or to afford much insight, but involves readily available standard functions. MAT-
LAB scripts to calculate all the approximations and additional figures are available
at http://mrb.niddk.nih.gov/sherman.

10. Discussion. We have considered the steady-state problem of buffered dif-
fusion of Ca2+ near a single source and developed asymptotic approximations for
three distinct parameter regimes, two studied previously in the biophysical literature
(EBA, RBA) and one new (IBA). We have reduced the parameter space from seven
dimensional parameters to three dimensionless ones. The three parameter regimes we
consider are defined by the dimensionless diffusion coefficients of Ca2+ and buffer in
comparison to each other and to the rate of reaction.
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The key dimensionless quantities, εc and εb, also capture other parameter rela-
tionships observed previously, such as the importance of a strong source for RBA and
of high buffer concentration for EBA. The balance of the many physical parameters
essentially boils down to whether free buffer can get in to the source fast enough to
replace the bound buffer and avoid saturation or whether Ca2+ overpowers the buffer.

The parametric dependence of the various regimes is clearer perhaps if the al-
ternative dimensionless quantities ε and µ = β/D (cf. section 4) are used. Source
strength and binding rate correspond to the ε coordinate, whereas buffer concentra-
tion and the ratio of the buffer and Ca2+ diffusion coefficients correspond to the µ
coordinate.

Furthermore, physical characterizations that were previously assumed in order
to derive the RBA (local equilibrium) and the EBA (nonsaturation of buffer) are
derived here as consequences of assumptions about the sizes of these parameters.
At higher order, the physical assumptions are seen to be only relative, not absolute.
Buffer is neither perfectly in equilibrium nor completely saturated at the source in the
higher-order RBA, and partial buffer saturation is seen at higher order in the EBA.
The systematic mathematical treatment here thus confirms, amplifies, and extends
existing biophysical studies.

We also have analyzed the conditions of validity of LIN (solution to the linearized
equations), which hold for an impressively large region of the (εb,εc)-plane, especially
for c, but which are not apparent a priori. We have found that LIN does not require
the deviation of c from its value at ∞ to be small; only the deviation of b from its
value at ∞ need be small. This condition holds in the EBA regime, where the buffer
does not saturate. In the IBA regime, where buffer does saturate, but does not have
much effect on Ca2+, LIN also gives a good approximation for c, though not for b.

The results obtained here nearly cover the (εb,εc)-plane, except near the mid-
dle diagonal (Figures 9.1, 9.2). The asymptotic formulas can be extended easily to
higher order, but require more complex formulas. The higher-order EBA formulas
involve higher-order exponential integrals, while the higher-order RBA formulas in-
volve higher derivatives of the leading-order terms. Note, however, that adding more
terms does not necessarily improve the asymptotic approximations if the expansion
parameter is not small. Indeed, applying the formulas outside their regions of valid-
ity can lead to nonphysical solutions, such as negative buffer concentration in EBA
(and LIN) (see Figure 4.1, lower right inset) and nonmonotonic solutions in RBA.
Stern [20] has suggested that one can improve LIN numerically by reformulating the
equations as integral equations and constructing successive approximations.

Two natural extensions of this work are to multiple buffers and to multiple sources.
(For the first-order steady-state RBA with multiple sources, see [3].) Multiple sources
are important because Ca2+ sources often are clustered in cells. For example, the
“elementary events” in Ca2+ release from internal stores, termed “puffs” or “sparks”
[1, 5, 18], are probably generated by highly clustered sources. If the density of sources
is high enough, the regions of validity will be shifted away from EBA and toward
RBA [15]. This is clear when the sources are close enough together to be considered
as lumped point sources, but a more detailed analysis of how this transition occurs
would be of interest.

The analysis presented here finally needs to be extended to time-dependent cases.
Recall that Wagner and Keizer [21] heuristically derived RBA for the time-dependent
traveling wave problem. It is interesting to compare the conditions for the validity of
the RBA that they derived with those derived here for a point source. Wagner and
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Keizer argued that the RBA would be valid when reaction is fast compared to the dif-
fusive time-scale. The reaction time-scale was determined by linearizing the spatially
uniform, time-dependent equations, giving Treact = 1/

(
k+[Ca2+]∞ + k+[B]∞ + k−

)
.

The diffusion time-scale was determined by Tdiff = L2
wave/Dc, where Lwave is the

thickness of the wave-front. Replacing Lwave by our length constant L (section 4),
the criterion Treact/Tdiff � 1 implies that our ε � 1 provided β = O(1). If, in addi-
tion, D = O(1), then RBA indeed will be valid (section 6). Thus, the Wagner–Keizer
criterion is a useful necessary condition but is not sufficient; this is fundamentally
a two-parameter problem and cannot be reduced to a single ratio. Moreover, while
buffer is everywhere in equilibrium with Ca2+, the dependence on source strength
is opposite in the two cases. A traveling wave-front connects two regions in which
buffer and calcium are in equilibrium, and, if the transition is gradual enough, they
will remain in equilibrium. Thus, the RBA tends to be valid for waves that are broad
in traveling-wave coordinates. Note that such waves would be generated by low-
amplitude Ca2+ release events. In contrast, the steady-state RBA near a point source
tends to be valid when the source amplitude is large. Thus, each new case requires
a separate asymptotic treatment. Asymptotic analyses of the time-dependent RBA
both near a point source and for traveling waves are forthcoming.
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